blob: 4de9722d4570ee6fb43874b3ae5fa873ef8706eb (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
# @package _global_
defaults:
- override /mapping: null
- override /criterion: null
- override /callbacks: htr
- override /datamodule: iam_extended_paragraphs
- override /network: null
- override /model: null
- override /lr_schedulers: null
- override /optimizers: null
epochs: &epochs 720
ignore_index: &ignore_index 3
num_classes: &num_classes 58
max_output_len: &max_output_len 682
summary: [[1, 1, 576, 640], [1, 682]]
criterion:
_target_: torch.nn.CrossEntropyLoss
ignore_index: *ignore_index
mapping: &mapping
mapping:
_target_: text_recognizer.data.mappings.emnist.EmnistMapping
extra_symbols: [ "\n" ]
callbacks:
stochastic_weight_averaging:
_target_: pytorch_lightning.callbacks.StochasticWeightAveraging
swa_epoch_start: 0.75
swa_lrs: 1.0e-5
annealing_epochs: 10
annealing_strategy: cos
device: null
optimizers:
madgrad:
_target_: madgrad.MADGRAD
lr: 1.0e-4
momentum: 0.9
weight_decay: 5.0e-6
eps: 1.0e-6
parameters: network
lr_schedulers:
network:
_target_: torch.optim.lr_scheduler.OneCycleLR
max_lr: 1.0e-4
total_steps: null
epochs: *epochs
steps_per_epoch: 316
pct_start: 0.03
anneal_strategy: cos
cycle_momentum: true
base_momentum: 0.85
max_momentum: 0.95
div_factor: 25
final_div_factor: 1.0e2
three_phase: false
last_epoch: -1
verbose: false
interval: step
monitor: val/loss
datamodule:
_target_: text_recognizer.data.iam_extended_paragraphs.IAMExtendedParagraphs
batch_size: 4
num_workers: 12
train_fraction: 0.8
pin_memory: true
<< : *mapping
network:
_target_: text_recognizer.networks.conv_transformer.ConvTransformer
input_dims: [1, 576, 640]
hidden_dim: &hidden_dim 256
encoder_dim: 1280
dropout_rate: 0.1
num_classes: *num_classes
pad_index: *ignore_index
encoder:
_target_: text_recognizer.networks.encoders.efficientnet.EfficientNet
arch: b0
out_channels: 1280
stochastic_dropout_rate: 0.2
bn_momentum: 0.99
bn_eps: 1.0e-3
decoder:
_target_: text_recognizer.networks.transformer.layers.Decoder
dim: *hidden_dim
depth: 3
num_heads: 4
attn_fn: text_recognizer.networks.transformer.attention.Attention
attn_kwargs:
dim_head: 32
dropout_rate: 0.05
local_attn_fn: text_recognizer.networks.transformer.local_attention.LocalAttention
local_attn_kwargs:
dim_head: 32
dropout_rate: 0.05
window_size: 11
look_back: 2
depth: 2
norm_fn: text_recognizer.networks.transformer.norm.ScaleNorm
ff_fn: text_recognizer.networks.transformer.mlp.FeedForward
ff_kwargs:
dim_out: null
expansion_factor: 4
glu: true
dropout_rate: 0.05
cross_attend: true
pre_norm: true
rotary_emb:
_target_: text_recognizer.networks.transformer.embeddings.rotary.RotaryEmbedding
dim: 32
pixel_pos_embedding:
_target_: text_recognizer.networks.transformer.embeddings.axial.AxialPositionalEmbedding
dim: *hidden_dim
shape: [18, 20]
token_pos_embedding:
_target_: text_recognizer.networks.transformer.embeddings.fourier.PositionalEncoding
hidden_dim: *hidden_dim
dropout_rate: 0.05
max_len: *max_output_len
model:
_target_: text_recognizer.models.transformer.TransformerLitModel
<< : *mapping
max_output_len: *max_output_len
start_token: <s>
end_token: <e>
pad_token: <p>
trainer:
_target_: pytorch_lightning.Trainer
stochastic_weight_avg: true
auto_scale_batch_size: binsearch
auto_lr_find: false
gradient_clip_val: 0.5
fast_dev_run: false
gpus: 1
precision: 16
max_epochs: *epochs
terminate_on_nan: true
weights_summary: null
limit_train_batches: 1.0
limit_val_batches: 1.0
limit_test_batches: 1.0
resume_from_checkpoint: null
accumulate_grad_batches: 16
overfit_batches: 0
|