blob: 485e963388bf5efb46900aa94fbd80d87a069265 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
# @package _global_
defaults:
- override /network: vqvae
- override /criterion: vqgan_loss
- override /model: lit_vqgan
- override /callbacks: wandb_vae
- override /optimizers: null
- override /lr_schedulers: null
criterion:
_target_: text_recognizer.criterions.vqgan_loss.VQGANLoss
reconstruction_loss:
_target_: torch.nn.L1Loss
reduction: mean
discriminator:
_target_: text_recognizer.criterions.n_layer_discriminator.NLayerDiscriminator
in_channels: 1
num_channels: 64
num_layers: 3
vq_loss_weight: 0.25
discriminator_weight: 1.0
discriminator_factor: 1.0
discriminator_iter_start: 2.0e4
datamodule:
batch_size: 6
lr_schedulers:
generator:
_target_: torch.optim.lr_scheduler.OneCycleLR
max_lr: 3.0e-4
total_steps: null
epochs: 100
steps_per_epoch: 3369
pct_start: 0.1
anneal_strategy: cos
cycle_momentum: true
base_momentum: 0.85
max_momentum: 0.95
div_factor: 1.0e3
final_div_factor: 1.0e4
three_phase: true
last_epoch: -1
verbose: false
# Non-class arguments
interval: step
monitor: val/loss
discriminator:
_target_: torch.optim.lr_scheduler.CosineAnnealingLR
T_max: 64
eta_min: 0.0
last_epoch: -1
interval: epoch
monitor: val/loss
optimizers:
generator:
_target_: madgrad.MADGRAD
lr: 1.0e-4
momentum: 0.5
weight_decay: 0
eps: 1.0e-7
parameters: network
discriminator:
_target_: madgrad.MADGRAD
lr: 4.5e-6
momentum: 0.5
weight_decay: 0
eps: 1.0e-6
parameters: loss_fn.discriminator
trainer:
max_epochs: 64
# gradient_clip_val: 1.0e1
summary: null
|