summaryrefslogtreecommitdiff
path: root/text_recognizer/callbacks
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2021-07-08 22:26:30 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2021-07-08 22:26:30 +0200
commit97092991618d8c7ddfc477f2ceba0749071587d0 (patch)
tree934ce3d1406f19fd9a3e9016cb724f4953117cc4 /text_recognizer/callbacks
parent72befa6d8cc4c7ecf698512a97424641ee81725a (diff)
Move callbacks to training folder, refactor
Diffstat (limited to 'text_recognizer/callbacks')
-rw-r--r--text_recognizer/callbacks/__init__.py1
-rw-r--r--text_recognizer/callbacks/wandb_callbacks.py211
2 files changed, 0 insertions, 212 deletions
diff --git a/text_recognizer/callbacks/__init__.py b/text_recognizer/callbacks/__init__.py
deleted file mode 100644
index 82d8ce3..0000000
--- a/text_recognizer/callbacks/__init__.py
+++ /dev/null
@@ -1 +0,0 @@
-"""Module for PyTorch Lightning callbacks."""
diff --git a/text_recognizer/callbacks/wandb_callbacks.py b/text_recognizer/callbacks/wandb_callbacks.py
deleted file mode 100644
index d9d81f6..0000000
--- a/text_recognizer/callbacks/wandb_callbacks.py
+++ /dev/null
@@ -1,211 +0,0 @@
-"""Weights and Biases callbacks."""
-from pathlib import Path
-from typing import List
-
-import attr
-import wandb
-from pytorch_lightning import Callback, LightningModule, Trainer
-from pytorch_lightning.loggers import LoggerCollection, WandbLogger
-
-
-def get_wandb_logger(trainer: Trainer) -> WandbLogger:
- """Safely get W&B logger from Trainer."""
-
- if isinstance(trainer.logger, WandbLogger):
- return trainer.logger
-
- if isinstance(trainer.logger, LoggerCollection):
- for logger in trainer.logger:
- if isinstance(logger, WandbLogger):
- return logger
-
- raise Exception("Weight and Biases logger not found for some reason...")
-
-
-@attr.s
-class WatchModel(Callback):
- """Make W&B watch the model at the beginning of the run."""
-
- log: str = attr.ib(default="gradients")
- log_freq: int = attr.ib(default=100)
-
- def __attrs_pre_init__(self) -> None:
- super().__init__()
-
- def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None:
- """Watches model weights with wandb."""
- logger = get_wandb_logger(trainer)
- logger.watch(model=trainer.model, log=self.log, log_freq=self.log_freq)
-
-
-@attr.s
-class UploadCodeAsArtifact(Callback):
- """Upload all *.py files to W&B as an artifact, at the beginning of the run."""
-
- project_dir: Path = attr.ib(converter=Path)
-
- def __attrs_pre_init__(self) -> None:
- super().__init__()
-
- def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None:
- """Uploads project code as an artifact."""
- logger = get_wandb_logger(trainer)
- experiment = logger.experiment
- artifact = wandb.Artifact("project-source", type="code")
- for filepath in self.project_dir.glob("**/*.py"):
- artifact.add_file(filepath)
-
- experiment.use_artifact(artifact)
-
-
-@attr.s
-class UploadCheckpointAsArtifact(Callback):
- """Upload checkpoint to wandb as an artifact, at the end of a run."""
-
- ckpt_dir: Path = attr.ib(converter=Path)
- upload_best_only: bool = attr.ib()
-
- def __attrs_pre_init__(self) -> None:
- super().__init__()
-
- def on_train_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
- """Uploads model checkpoint to W&B."""
- logger = get_wandb_logger(trainer)
- experiment = logger.experiment
- ckpts = wandb.Artifact("experiment-ckpts", type="checkpoints")
-
- if self.upload_best_only:
- ckpts.add_file(trainer.checkpoint_callback.best_model_path)
- else:
- for ckpt in (self.ckpt_dir).glob("**/*.ckpt"):
- ckpts.add_file(ckpt)
-
- experiment.use_artifact(ckpts)
-
-
-@attr.s
-class LogTextPredictions(Callback):
- """Logs a validation batch with image to text transcription."""
-
- num_samples: int = attr.ib(default=8)
- ready: bool = attr.ib(default=True)
-
- def __attrs_pre_init__(self) -> None:
- super().__init__()
-
- def _log_predictions(
- stage: str, trainer: Trainer, pl_module: LightningModule
- ) -> None:
- """Logs the predicted text contained in the images."""
- if not self.ready:
- return None
-
- logger = get_wandb_logger(trainer)
- experiment = logger.experiment
-
- # Get a validation batch from the validation dataloader.
- samples = next(iter(trainer.datamodule.val_dataloader()))
- imgs, labels = samples
-
- imgs = imgs.to(device=pl_module.device)
- logits = pl_module(imgs)
-
- mapping = pl_module.mapping
- experiment.log(
- {
- f"OCR/{experiment.name}/{stage}": [
- wandb.Image(
- img,
- caption=f"Pred: {mapping.get_text(pred)}, Label: {mapping.get_text(label)}",
- )
- for img, pred, label in zip(
- imgs[: self.num_samples],
- logits[: self.num_samples],
- labels[: self.num_samples],
- )
- ]
- }
- )
-
- def on_sanity_check_start(
- self, trainer: Trainer, pl_module: LightningModule
- ) -> None:
- """Sets ready attribute."""
- self.ready = False
-
- def on_sanity_check_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
- """Start executing this callback only after all validation sanity checks end."""
- self.ready = True
-
- def on_validation_epoch_end(
- self, trainer: Trainer, pl_module: LightningModule
- ) -> None:
- """Logs predictions on validation epoch end."""
- self._log_predictions(stage="val", trainer=trainer, pl_module=pl_module)
-
- def on_train_epoch_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
- """Logs predictions on train epoch end."""
- self._log_predictions(stage="test", trainer=trainer, pl_module=pl_module)
-
-
-@attr.s
-class LogReconstuctedImages(Callback):
- """Log reconstructions of images."""
-
- num_samples: int = attr.ib(default=8)
- ready: bool = attr.ib(default=True)
-
- def __attrs_pre_init__(self) -> None:
- super().__init__()
-
- def _log_reconstruction(
- self, stage: str, trainer: Trainer, pl_module: LightningModule
- ) -> None:
- """Logs the reconstructions."""
- if not self.ready:
- return None
-
- logger = get_wandb_logger(trainer)
- experiment = logger.experiment
-
- # Get a validation batch from the validation dataloader.
- samples = next(iter(trainer.datamodule.val_dataloader()))
- imgs, _ = samples
-
- imgs = imgs.to(device=pl_module.device)
- reconstructions = pl_module(imgs)
-
- experiment.log(
- {
- f"Reconstructions/{experiment.name}/{stage}": [
- [
- wandb.Image(img),
- wandb.Image(rec),
- ]
- for img, rec in zip(
- imgs[: self.num_samples],
- reconstructions[: self.num_samples],
- )
- ]
- }
- )
-
- def on_sanity_check_start(
- self, trainer: Trainer, pl_module: LightningModule
- ) -> None:
- """Sets ready attribute."""
- self.ready = False
-
- def on_sanity_check_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
- """Start executing this callback only after all validation sanity checks end."""
- self.ready = True
-
- def on_validation_epoch_end(
- self, trainer: Trainer, pl_module: LightningModule
- ) -> None:
- """Logs predictions on validation epoch end."""
- self._log_reconstruction(stage="val", trainer=trainer, pl_module=pl_module)
-
- def on_train_epoch_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
- """Logs predictions on train epoch end."""
- self._log_reconstruction(stage="test", trainer=trainer, pl_module=pl_module)