diff options
Diffstat (limited to 'text_recognizer/criterion/vqgan_loss.py')
-rw-r--r-- | text_recognizer/criterion/vqgan_loss.py | 123 |
1 files changed, 123 insertions, 0 deletions
diff --git a/text_recognizer/criterion/vqgan_loss.py b/text_recognizer/criterion/vqgan_loss.py new file mode 100644 index 0000000..9d1cddd --- /dev/null +++ b/text_recognizer/criterion/vqgan_loss.py @@ -0,0 +1,123 @@ +"""VQGAN loss for PyTorch Lightning.""" +from typing import Optional, Tuple + +import torch +from torch import nn, Tensor +import torch.nn.functional as F + +from text_recognizer.criterions.n_layer_discriminator import NLayerDiscriminator + + +def _adopt_weight( + weight: Tensor, global_step: int, threshold: int = 0, value: float = 0.0 +) -> float: + """Sets weight to value after the threshold is passed.""" + if global_step < threshold: + weight = value + return weight + + +class VQGANLoss(nn.Module): + """VQGAN loss.""" + + def __init__( + self, + reconstruction_loss: nn.L1Loss, + discriminator: NLayerDiscriminator, + commitment_weight: float = 1.0, + discriminator_weight: float = 1.0, + discriminator_factor: float = 1.0, + discriminator_iter_start: int = 1000, + ) -> None: + super().__init__() + self.reconstruction_loss = reconstruction_loss + self.discriminator = discriminator + self.commitment_weight = commitment_weight + self.discriminator_weight = discriminator_weight + self.discriminator_factor = discriminator_factor + self.discriminator_iter_start = discriminator_iter_start + + @staticmethod + def adversarial_loss(logits_real: Tensor, logits_fake: Tensor) -> Tensor: + """Calculates the adversarial loss.""" + loss_real = torch.mean(F.relu(1.0 - logits_real)) + loss_fake = torch.mean(F.relu(1.0 + logits_fake)) + d_loss = (loss_real + loss_fake) / 2.0 + return d_loss + + def _adaptive_weight( + self, rec_loss: Tensor, g_loss: Tensor, decoder_last_layer: Tensor + ) -> Tensor: + rec_grads = torch.autograd.grad( + rec_loss, decoder_last_layer, retain_graph=True + )[0] + g_grads = torch.autograd.grad(g_loss, decoder_last_layer, retain_graph=True)[0] + d_weight = torch.norm(rec_grads) / (torch.norm(g_grads) + 1.0e-4) + d_weight = torch.clamp(d_weight, 0.0, 1.0e4).detach() + d_weight *= self.discriminator_weight + return d_weight + + def forward( + self, + data: Tensor, + reconstructions: Tensor, + commitment_loss: Tensor, + decoder_last_layer: Tensor, + optimizer_idx: int, + global_step: int, + stage: str, + ) -> Optional[Tuple]: + """Calculates the VQGAN loss.""" + rec_loss: Tensor = self.reconstruction_loss(reconstructions, data) + + # GAN part. + if optimizer_idx == 0: + logits_fake = self.discriminator(reconstructions) + g_loss = -torch.mean(logits_fake) + + if self.training: + d_weight = self._adaptive_weight( + rec_loss=rec_loss, + g_loss=g_loss, + decoder_last_layer=decoder_last_layer, + ) + else: + d_weight = torch.tensor(0.0) + + d_factor = _adopt_weight( + self.discriminator_factor, + global_step=global_step, + threshold=self.discriminator_iter_start, + ) + + loss: Tensor = ( + rec_loss + + d_factor * d_weight * g_loss + + self.commitment_weight * commitment_loss + ) + log = { + f"{stage}/total_loss": loss, + f"{stage}/commitment_loss": commitment_loss, + f"{stage}/rec_loss": rec_loss, + f"{stage}/g_loss": g_loss, + } + return loss, log + + if optimizer_idx == 1: + logits_fake = self.discriminator(reconstructions.detach()) + logits_real = self.discriminator(data.detach()) + + d_factor = _adopt_weight( + self.discriminator_factor, + global_step=global_step, + threshold=self.discriminator_iter_start, + ) + + d_loss = d_factor * self.adversarial_loss( + logits_real=logits_real, logits_fake=logits_fake + ) + + log = { + f"{stage}/d_loss": d_loss, + } + return d_loss, log |