diff options
Diffstat (limited to 'text_recognizer')
-rw-r--r-- | text_recognizer/criterion/__init__.py (renamed from text_recognizer/criterions/__init__.py) | 0 | ||||
-rw-r--r-- | text_recognizer/criterion/ctc.py (renamed from text_recognizer/criterions/ctc.py) | 0 | ||||
-rw-r--r-- | text_recognizer/criterion/label_smoothing.py (renamed from text_recognizer/criterions/label_smoothing.py) | 0 | ||||
-rw-r--r-- | text_recognizer/criterion/n_layer_discriminator.py (renamed from text_recognizer/criterions/n_layer_discriminator.py) | 0 | ||||
-rw-r--r-- | text_recognizer/criterion/vqgan_loss.py (renamed from text_recognizer/criterions/vqgan_loss.py) | 0 | ||||
-rw-r--r-- | text_recognizer/criterions/transducer.py | 376 |
6 files changed, 0 insertions, 376 deletions
diff --git a/text_recognizer/criterions/__init__.py b/text_recognizer/criterion/__init__.py index 5b0a7ab..5b0a7ab 100644 --- a/text_recognizer/criterions/__init__.py +++ b/text_recognizer/criterion/__init__.py diff --git a/text_recognizer/criterions/ctc.py b/text_recognizer/criterion/ctc.py index 42a0b25..42a0b25 100644 --- a/text_recognizer/criterions/ctc.py +++ b/text_recognizer/criterion/ctc.py diff --git a/text_recognizer/criterions/label_smoothing.py b/text_recognizer/criterion/label_smoothing.py index 5b3a47e..5b3a47e 100644 --- a/text_recognizer/criterions/label_smoothing.py +++ b/text_recognizer/criterion/label_smoothing.py diff --git a/text_recognizer/criterions/n_layer_discriminator.py b/text_recognizer/criterion/n_layer_discriminator.py index a9f47f9..a9f47f9 100644 --- a/text_recognizer/criterions/n_layer_discriminator.py +++ b/text_recognizer/criterion/n_layer_discriminator.py diff --git a/text_recognizer/criterions/vqgan_loss.py b/text_recognizer/criterion/vqgan_loss.py index 9d1cddd..9d1cddd 100644 --- a/text_recognizer/criterions/vqgan_loss.py +++ b/text_recognizer/criterion/vqgan_loss.py diff --git a/text_recognizer/criterions/transducer.py b/text_recognizer/criterions/transducer.py deleted file mode 100644 index 089bff7..0000000 --- a/text_recognizer/criterions/transducer.py +++ /dev/null @@ -1,376 +0,0 @@ -"""Transducer and the transducer loss function.py - -Stolen from: - https://github.com/facebookresearch/gtn_applications/blob/master/transducer.py - -""" -from pathlib import Path -import itertools -from typing import Dict, List, Optional, Sequence, Set, Tuple - -import gtn -import torch -from torch import nn -from torch import Tensor - -from text_recognizer.data.utils.iam_preprocessor import Preprocessor - - -def make_scalar_graph(weight) -> gtn.Graph: - scalar = gtn.Graph() - scalar.add_node(True) - scalar.add_node(False, True) - scalar.add_arc(0, 1, 0, 0, weight) - return scalar - - -def make_chain_graph(sequence) -> gtn.Graph: - graph = gtn.Graph(False) - graph.add_node(True) - for i, s in enumerate(sequence): - graph.add_node(False, i == (len(sequence) - 1)) - graph.add_arc(i, i + 1, s) - return graph - - -def make_transitions_graph( - ngram: int, num_tokens: int, calc_grad: bool = False -) -> gtn.Graph: - transitions = gtn.Graph(calc_grad) - transitions.add_node(True, ngram == 1) - - state_map = {(): 0} - - # First build transitions which include <s>: - for n in range(1, ngram): - for state in itertools.product(range(num_tokens), repeat=n): - in_idx = state_map[state[:-1]] - out_idx = transitions.add_node(False, ngram == 1) - state_map[state] = out_idx - transitions.add_arc(in_idx, out_idx, state[-1]) - - for state in itertools.product(range(num_tokens), repeat=ngram): - state_idx = state_map[state[:-1]] - new_state_idx = state_map[state[1:]] - # p(state[-1] | state[:-1]) - transitions.add_arc(state_idx, new_state_idx, state[-1]) - - if ngram > 1: - # Build transitions which include </s>: - end_idx = transitions.add_node(False, True) - for in_idx in range(end_idx): - transitions.add_arc(in_idx, end_idx, gtn.epsilon) - - return transitions - - -def make_lexicon_graph( - word_pieces: List, graphemes_to_idx: Dict, special_tokens: Optional[Set] -) -> gtn.Graph: - """Constructs a graph which transduces letters to word pieces.""" - graph = gtn.Graph(False) - graph.add_node(True, True) - for i, wp in enumerate(word_pieces): - prev = 0 - if special_tokens is not None and wp in special_tokens: - n = graph.add_node() - graph.add_arc(prev, n, graphemes_to_idx[wp], i) - else: - for character in wp[:-1]: - n = graph.add_node() - graph.add_arc(prev, n, graphemes_to_idx[character], gtn.epsilon) - prev = n - graph.add_arc(prev, 0, graphemes_to_idx[wp[-1]], i) - graph.arc_sort() - return graph - - -def make_token_graph( - token_list: List, blank: str = "none", allow_repeats: bool = True -) -> gtn.Graph: - """Constructs a graph with all the individual token transition models.""" - if not allow_repeats and blank != "optional": - raise ValueError("Must use blank='optional' if disallowing repeats.") - - ntoks = len(token_list) - graph = gtn.Graph(False) - - # Creating nodes - graph.add_node(True, True) - for i in range(ntoks): - # We can consume one or more consecutive word - # pieces for each emission: - # E.g. [ab, ab, ab] transduces to [ab] - graph.add_node(False, blank != "forced") - - if blank != "none": - graph.add_node() - - # Creating arcs - if blank != "none": - # Blank index is assumed to be last (ntoks) - graph.add_arc(0, ntoks + 1, ntoks, gtn.epsilon) - graph.add_arc(ntoks + 1, 0, gtn.epsilon) - - for i in range(ntoks): - graph.add_arc((ntoks + 1) if blank == "forced" else 0, i + 1, i) - graph.add_arc(i + 1, i + 1, i, gtn.epsilon) - - if allow_repeats: - if blank == "forced": - # Allow transitions from token to blank only - graph.add_arc(i + 1, ntoks + 1, ntoks, gtn.epsilon) - else: - # Allow transition from token to blank and all other tokens - graph.add_arc(i + 1, 0, gtn.epsilon) - - else: - # allow transitions to blank and all other tokens except the same token - graph.add_arc(i + 1, ntoks + 1, ntoks, gtn.epsilon) - for j in range(ntoks): - if i != j: - graph.add_arc(i + 1, j + 1, j, j) - - return graph - - -class TransducerLossFunction(torch.autograd.Function): - @staticmethod - def forward( - ctx, - inputs, - targets, - tokens, - lexicon, - transition_params=None, - transitions=None, - reduction="none", - ) -> Tensor: - B, T, C = inputs.shape - - losses = [None] * B - emissions_graphs = [None] * B - - if transitions is not None: - if transition_params is None: - raise ValueError("Specified transitions, but not transition params.") - - cpu_data = transition_params.cpu().contiguous() - transitions.set_weights(cpu_data.data_ptr()) - transitions.calc_grad = transition_params.requires_grad - transitions.zero_grad() - - def process(b: int) -> None: - # Create emission graph: - emissions = gtn.linear_graph(T, C, inputs.requires_grad) - cpu_data = inputs[b].cpu().contiguous() - emissions.set_weights(cpu_data.data_ptr()) - target = make_chain_graph(targets[b]) - target.arc_sort(True) - - # Create token tot grapheme decomposition graph - tokens_target = gtn.remove(gtn.project_output(gtn.compose(target, lexicon))) - tokens_target.arc_sort() - - # Create alignment graph: - aligments = gtn.project_input( - gtn.remove(gtn.compose(tokens, tokens_target)) - ) - aligments.arc_sort() - - # Add transitions scores: - if transitions is not None: - aligments = gtn.intersect(transitions, aligments) - aligments.arc_sort() - - loss = gtn.forward_score(gtn.intersect(emissions, aligments)) - - # Normalize if needed: - if transitions is not None: - norm = gtn.forward_score(gtn.intersect(emissions, transitions)) - loss = gtn.subtract(loss, norm) - - losses[b] = gtn.negate(loss) - - # Save for backward: - if emissions.calc_grad: - emissions_graphs[b] = emissions - - gtn.parallel_for(process, range(B)) - - ctx.graphs = (losses, emissions_graphs, transitions) - ctx.input_shape = inputs.shape - - # Optionally reduce by target length - if reduction == "mean": - scales = [(1 / len(t) if len(t) > 0 else 1.0) for t in targets] - else: - scales = [1.0] * B - - ctx.scales = scales - - loss = torch.tensor([l.item() * s for l, s in zip(losses, scales)]) - return torch.mean(loss.to(inputs.device)) - - @staticmethod - def backward(ctx, grad_output) -> Tuple: - losses, emissions_graphs, transitions = ctx.graphs - scales = ctx.scales - - B, T, C = ctx.input_shape - calc_emissions = ctx.needs_input_grad[0] - input_grad = torch.empty((B, T, C)) if calc_emissions else None - - def process(b: int) -> None: - scale = make_scalar_graph(scales[b]) - gtn.backward(losses[b], scale) - emissions = emissions_graphs[b] - if calc_emissions: - grad = emissions.grad().weights_to_numpy() - input_grad[b] = torch.tensor(grad).view(1, T, C) - - gtn.parallel_for(process, range(B)) - - if calc_emissions: - input_grad = input_grad.to(grad_output.device) - input_grad *= grad_output / B - - if ctx.needs_input_grad[4]: - grad = transitions.grad().weights_to_numpy() - transition_grad = torch.tensor(grad).to(grad_output.device) - transition_grad *= grad_output / B - else: - transition_grad = None - - return ( - input_grad, - None, # target - None, # tokens - None, # lexicon - transition_grad, # transition params - None, # transitions graph - None, - ) - - -TransducerLoss = TransducerLossFunction.apply - - -class Transducer(nn.Module): - def __init__( - self, - preprocessor: Preprocessor, - ngram: int = 0, - transitions: str = None, - blank: str = "none", - allow_repeats: bool = True, - reduction: str = "none", - ) -> None: - """A generic transducer loss function. - - Args: - preprocessor (Preprocessor) : The IAM preprocessor for word pieces. - ngram (int) : Order of the token-level transition model. If `ngram=0` - then no transition model is used. - blank (string) : Specifies the usage of blank token - 'none' - do not use blank token - 'optional' - allow an optional blank inbetween tokens - 'forced' - force a blank inbetween tokens (also referred to as garbage token) - allow_repeats (boolean) : If false, then we don't allow paths with - consecutive tokens in the alignment graph. This keeps the graph - unambiguous in the sense that the same input cannot transduce to - different outputs. - """ - super().__init__() - if blank not in ["optional", "forced", "none"]: - raise ValueError( - "Invalid value specified for blank. Must be in ['optional', 'forced', 'none']" - ) - self.tokens = make_token_graph( - preprocessor.tokens, blank=blank, allow_repeats=allow_repeats - ) - self.lexicon = make_lexicon_graph( - preprocessor.tokens, - preprocessor.graphemes_to_index, - preprocessor.special_tokens, - ) - self.ngram = ngram - - self.transitions: Optional[gtn.Graph] = None - self.transitions_params: Optional[nn.Parameter] = None - self._load_transitions(transitions, preprocessor, blank) - - if ngram > 0 and transitions is not None: - raise ValueError("Only one of ngram and transitions may be specified") - - self.reduction = reduction - - def _load_transitions( - self, transitions: Optional[str], preprocessor: Preprocessor, blank: str - ): - """Loads transition graph.""" - processed_path = ( - Path(__file__).resolve().parents[2] / "data" / "processed" / "iam_lines" - ) - if transitions is not None: - transitions = gtn.load(str(processed_path / transitions)) - if self.ngram > 0: - self.transitions = make_transitions_graph( - self.ngram, len(preprocessor.tokens) + int(blank != "none"), True - ) - if transitions is not None: - self.transitions = transitions - self.transitions.arc_sort() - self.transitions_params = nn.Parameter( - torch.zeros(self.transitions.num_arcs()) - ) - - def forward(self, inputs: Tensor, targets: Tensor) -> TransducerLoss: - return TransducerLoss( - inputs, - targets, - self.tokens, - self.lexicon, - self.transitions_params, - self.transitions, - self.reduction, - ) - - def viterbi(self, outputs: Tensor) -> List[Tensor]: - B, T, C = outputs.shape - - if self.transitions is not None: - cpu_data = self.transition_params.cpu().contiguous() - self.transitions.set_weights(cpu_data.data_ptr()) - self.transitions.calc_grad = False - - self.tokens.arc_sort() - - paths = [None] * B - - def process(b: int) -> None: - emissions = gtn.linear_graph(T, C, False) - cpu_data = outputs[b].cpu().contiguous() - emissions.set_weights(cpu_data.data_ptr()) - - if self.transitions is not None: - full_graph = gtn.intersect(emissions, self.transitions) - else: - full_graph = emissions - - # Find the best path and remove back-off arcs: - path = gtn.remove(gtn.viterbi_path(full_graph)) - - # Left compose the viterbi path with the "aligment to token" - # transducer to get the outputs: - path = gtn.compose(path, self.tokens) - - # When there are ambiguous paths (allow_repeats is true), we take - # the shortest: - path = gtn.viterbi_path(path) - path = gtn.remove(gtn.project_output(path)) - paths[b] = path.labels_to_list() - - gtn.parallel_for(process, range(B)) - predictions = [torch.IntTensor(path) for path in paths] - return predictions |